CS221: Logic Design

Instructors:
Dr. Ahmed Shalaby http:/bu.edu.eq/staffiahmedshalabyy 14\#
Dr. Fatma Sakr

Study: CS221: Logic Design

Why?

How?

What?

What? Logic Design

- Logic Design defines the fundamentals of Digital systems, such as computers and cell phones.

How? Course Book

Digital Fundamentals

ELEVENTH EDITION
Thomas L. Floyd

You can study from this course Digital Electronics - YouTube

How ? Course Content

Subject

Chapter 1: Introduction Concepts
Chapter 2: Number Systems, Operations, and Codes
Chapter 3: Logic Gates
Chapter 4 : Boolean Algebra and Logic Simplification
Chapter 5: Combinational Logic Analysis
Chapter 6: Functions of Combinational Logic
Midterm Exam
Chapter 7: Latches, Flip-Flops, and Timers
Chapter 8: Shift Registers
Chapter 9: Counters
Chapter 10: Programmable Logic

Why ? Logic Design

Keypad for entering number of tablets per bottle

The binary code representing the number of tablets bottled each time Register B has reached the maximum accumulated count.

Assessment

Final-Term Examination 50
Practical Examination (Project) + labs + Quiz (Assignments) 30
Mid-Term Examination 10
Oral Examination 10

Projects:
Digital Clock.
Traffic Light.

Projects

Projects

Elevator

Faculty of Computers \&
Artificial Intelligence

Parking System

Smart Automobile Parking System

In
Logic design
by

Yousef Elbaroudy (Section 24)	Yahya Hamza (Section 24)
Amira Alaa (Section 5)	Huda Mohammed Abdulfattah (Section 23)
Ali Osama (Section 12)	Yahya Emad (Section 24)

History Snapshots

- 1947: The transistor was invented

- 1958: Integrated Circuit (IC), A transistor was integrated with resistors and capacitors on a single semiconductor chips.
- 1971: first commercially microprocessor, Intel Corporation produced the Intel 4004, giving birth to a family of processors on a chip.
- 1981: The IBM PC (5150) was announced.

Digital System (How)

Chip Manufacturing - How are Microchips made? | Infineon

IC Technologies

- ASIC (Application Specific Integrated Circuit)
\square Full Custom (Transistor Level)
\square Standard Cell (Gate Level - libraries)
\square Gate Array (Gate Level already created of the wafer)
- Filed Programmable Devices
\square Complex
- Complex Programmable Logic Devices (CPLD)
- Field Programmable Gate Array (FPGA)
\square Simple
- Programmable logic Devices (PLD)
- Off-The-Shelf Components
\square MSI / SSI (Transistor Transistor Logic TTL - Series 7400), (Complementary Metal Oxide Semiconductor CMOS - Series 4000

Digital Fundamentals

CHAPTER 1 Digital Concepts

Digital and Analog Quantities

Digital System (Why)

- Easier to design.
- Flexibility and functionality. easier to store, transmit and manipulate information.
- Cheaper device.

CD drive

Digital System (Why) Analog vs. Digital

Most natural quantities (such as temperature, pressure, light intensity, ...) are analog quantities that vary continuously.

Analog = continuous Digital = discrete

Digital systems can process, store, and transmit data more efficiently but can only assign discrete values to each point.

Digital and Analog Quantities

Analog quantities have continuous values

Digital quantities have discrete sets of values

- Analog to Digital Converters ...Sampling and Quantization

Digital and Analog Quantities

Types of electronic devices or instruments:

- Analog
- Digital
- Combination analog and digital

Binary Digits, Logic Levels, and Digital Waveforms

Binary Digits, Logic Levels, and Digital Waveforms

- The conventional numbering system uses ten digits: $0,1,2,3,4,5,6,7,8$, and 9 .
- The binary numbering system uses just two digits: 0 and 1.
- They can also be called LOW and HIGH, where LOW = 0 and HIGH = 1

Transistors: nMOS

Gate $=0$

OFF (no connection between source and drain)

Gate $=1$

ON (channel between source and drain)

Transistor Function

CMOS Gates: NOT Gate

NOT

$$
Y=\bar{A}
$$

$$
\begin{array}{c|c}
A & Y \\
\hline 0 & 1 \\
1 & 0
\end{array}
$$

A	P1	N1	Y
0	ON	OFF	1
1	OFF	ON	0

Binary Digits, Logic Levels, and Digital Waveforms

The binary numbering system uses just two digits: 0 and 1.

Binary values are also represented by voltage levels

(a) Positive-going pulse

(b) Negative-going pulse

They can also be called LOW and HIGH, where LOW $=\mathbf{0}$ and HIGH $=\mathbf{1}$

Binary Digits, Logic Levels, and Digital Waveforms

Major parts of a digital pulse

- Base line
- Amplitude
- Rise time (t_{r})
- Pulse width (t_{w})
- Fall time (t_{f})

Binary Digits, Logic Levels, and Digital Waveforms

- $t_{w}=$ pulse width
- T = period of the waveform
- $\mathrm{f}=$ frequency of the waveform

$$
f=\frac{1}{T}
$$

Binary Digits, Logic Levels, and Digital Waveforms

The duty cycle of a binary waveform is defined as:

$$
\text { Duty cycle }=\left(\frac{t_{w}}{T}\right) \mathbf{1 0 0 \%}
$$

Binary Digits, Logic Levels, and Digital Waveforms

Timing Diagrams

A timing diagram (or waveform diagram) is used to show the relationship between two or more digital waveforms.

Binary Digits, Logic Levels, and Digital Waveforms

Serial and Parallel Data

Data can be transmitted by either serial transfer or parallel transfer.

Ports on a Typical Laptop Computer

- Question 1: How long will it take to transmit an 8-bit binary string using serial transmission if the clock frequency is 100 MHz ?
- Question 2: How long will it take to transmit an 8-bit binary string using parallel transmission if the clock frequency is 100 MHz ?

Basic Logic Operations

Basic Logic Operations

There are only three basic logic operations:

Two or more
inputs

Basic Logic Operations

The NOT operation

- When the input is LOW, the output is HIGH
- When the input is HIGH, the output is LOW

> The output logic level is always opposite the input logic level.

Basic Logic Operations

- The AND operation
- When any input is LOW, the output is LOW
- When both inputs are HIGH, the output is HIGH

Basic Logic Operations

- The OR operation
- When any input is HIGH, the output is HIGH
- When both inputs are LOW, the output is LOW

Overview of Basic Logic Functions

Overview of Basic Logic Functions

- Comparison function
- Arithmetic functions
- Code conversion function
- Encoding function
- Decoding function
- Data selection function
- Data storage function
- Counting function

Overview of Basic Logic Functions

Comparison function

- Compares two binary values and determines whether or not they are equal

Overview of Basic Logic Functions

Arithmetic functions

- Perform the basic arithmetic operations on two binary values:
- Addition
- Subtraction of two values
- Multiplication
- Division

Overview of Basic Logic Functions

Code conversion function

- Converts, or translates, information from one code format to another

Overview of Basic Logic Functions

Encoding function

- Converts non-binary information into a binary code

Overview of Basic Logic Functions

Decoding function

- Converts binary-coded information into a non-binary form

Overview of Basic Logic Functions

Data selection function

- Multiplexer (mux)
- Switches digital data from any number of input sources to a single output line
- Demultiplexer (demux)
- switches digital data from a single input to any number of output lines

Overview of Basic Logic Functions

Data storage function

- Retains binary data for a period of time
- Flip-flops (bistable multvibrators)
- Registers
- Semiconductor memories
- Magnetic-media memories
- Optical-media memories

Overview of Basic Logic Functions

Counting function

- Generates sequences of digital pulse that represent numbers

Fixed-Function Integrated Circuits

Fixed-Function Integrated Circuits

IC package styles

- Dual in-line package (DIP)
- Small-outline IC (SOIC)
- Flat pack (FP)
- Plastic-leaded chip carrier (PLCC)
- Leadless-ceramic chip carrier (LCCC)

Fixed-Function Integrated Circuits

- Dual in-line package (DIP)

DataSheet Ex.

Fixed-Function Integrated Circuits

- Small-outline IC (SOIC)

End view

Fixed-Function Integrated Circuits

- Flat pack (FP)

Fixed-Function Integrated Circuits

- Plastic-leaded chip carrier (PLCC)

Fixed-Function Integrated Circuits

- Leadless-ceramic chip carrier (LCCC)

IC Packaging

- ICs are packaged in ceramic or plastic.

IC Packaging	Dual In-line Package (DIP)	Small Outline IC (SOIC)	Quad Flat Package (QFP)	Pin Grid Array (PGA)	Ball Grid Array (BGA)
Type	lead frame	lead frame	lead frame	area array	area array
Pins connected to	two sides	two sides	four sides	bottom	bottom
Lead count	<64	<80	$32-200$	$64-500$	$64-500$
Through hole Surface mount	Yes	No	No	Yes	Yes
Cost	vory low	very low	Yes	Yes	Yes

Test and Measurement Instruments

Digital Multimeter

Logic Probe, Pulser, and Current Probe

Function Generator

Home Work

- 7400 Series and 4000 Series
- A popular series of TTL chips is the 7400 series
- A popular series of CMOS chips is the 4000 series

Circuit simulators.

Circuit Simulator Applet (falstad.com)

Circuits | Tinkercad

Technology Magazines

- https://spectrum.ieee.org/
- https://www.technologyreview.com/

Electronics Shops

- https://store.fut-electronics.com/
- http://ram-e-shop.com/oscmax/catalog/

